

# MINI-STM32G030C8T6 开发板实验教程

版本号: V2.0 拟制人: 倪工 时间: 2020年12月1日







| 1.本文档编写目的                                                  |
|------------------------------------------------------------|
| 2.实验例程操作说明                                                 |
| 2.1 GPIO 控制 LED 输出 3                                       |
| <b>2.2 GPIO</b> 外部中断输入 3                                   |
| <b>2.3 ADC 通道采集片内温度采集 3</b>                                |
| <b>2.4 定时器 PWM 波输出(1KHZ)</b> 4                             |
| <b>2.5 定时器 PWM 波输入</b> 5                                   |
| <b>2.6 定时器 1ms 中断</b> 6                                    |
| <b>2.7 CRC 校验实验</b> 6                                      |
| <b>2.8 DMA 传输实验</b> 7                                      |
| <b>2.9 FLASH</b> 读写实验                                      |
| 2.10 FreeRTOS 实验                                           |
| 2.11 IWDG 看门狗实验8                                           |
| 2.12 低功耗实验                                                 |
| <b>2.13 RTC 时钟实验</b> 9                                     |
| <b>2.15 EEPROM</b> 读写实验11                                  |
| <b>2.16 SPI DMA 通讯</b>                                     |
| <b>2.17 OLED 实验</b>                                        |
| <b>2.18 RT-THREAD</b> 实验 12                                |
| <b>2.19 IAP 实验</b>                                         |
| <b>2.20 UCOS-II 实验</b> 13                                  |
| <b>2.21 485</b> 通讯实验 · · · · · · · · · · · · · · · · · · · |
| <b>2.22 NRF2401</b> 实验 14                                  |
| <b>2.23 DS18B20</b> 温度实验 15                                |
| <b>2.24 DHT11 实验</b> 16                                    |
| <b>2.25 SR04 超声波测距实验</b> 17                                |
| <b>2.26 5V 步进电机实验</b> 18                                   |
| <b>2.27 红外避障实验</b> 19                                      |
| <b>2.28 红外遥控接收实验</b> 20                                    |
| <b>2.29 华邦 W25Q32 FLASH 读写</b> 21                          |
| <b>2.30 4 位数码管显示</b> 22                                    |
| <b>2.31 VL53L0X</b> 激光测距实验 23                              |



本使用手册是针对 MINI-STM32G030C8T6 核心开发板例程而编写的,包括每个实验例程的实验原理,实验步骤,注意 事项等,目前以 Keil5 开发环境说明。

## 2.实验例程操作说明

## 2.1 GPIO 控制 LED 输出

\_\_\_\_1.GPIO控制LED输出

实验原理:通过系统时钟每 100 毫秒控制 PB4 引脚输出高低电平,从而实现 LED 灯的亮灭。 实验步骤:

(1) 用 Keil5 打开 GPIO 控制 LED 输出实验工程,并编译。

(2) 用 USB 线给开发板上电,通过 STLink 给板子下载程序(使用 Jlink, Ulink 下载得修改工程中的下载器配置)。

(3) 重新上电, LED 灯会每 100 毫秒亮灭交替闪烁。

## 2.2 GPIO 外部中断输入

📙 2.GPIO外部中断输入

实验原理:通过 KEY1 按键的 PC13 引脚配置成中断输入引脚,PB4 引脚配置成输出,每次按键, PC13 引脚就会进入一次外部中断,每进入一次中断服务程序,改变 PB4 输出电平的高低,从而实现 LED 灯的亮灭。

实验步骤:

(1) 用 Keil5 打开 GPIO 外部中断输入实验工程,并编译。

(2)用 USB 线给开发板上电,通过 STLink 给板子下载程序(使用 Jlink, Ulink 下载得修改工程中的下载器配置)。

(3) 重新上电,每按一次 KEY1 按键,LED 灯会闪灭交替变化一次。

## 2.3 ADC 通道采集片内温度采集

\_\_\_\_3.ADC通道采集片内温度采集

实验原理:通过 DMA 采样三个数,一个是 PA4 引脚上的电压电平,一个是内部温度传感器数值,还 有个是 VREF 电压。



实验步骤:

(1) 用杜邦线连接 PA4 引脚与 VDD(3.3V),用 Keil5 打开 ADC 通道采集片内温度采集实验工程,并编译。

(2)用 USB 线给开发板上电,通过 STLink 给板子下载程序(使用 Jlink, Ulink 下载得修改工程中的下载器配置)。

(3) 用 Keil 运行程序,全速运行,查看 Keil 调试 Watch 界面,如下图,能发现数组数据 3 个一起更新。aADCxConvertedData[0]地址放的是 PA4 引脚的采样值=(0xffb/4095)\*3.3=3.29V。 aADCxConvertedData[2]放的是参考电压数值 0x05d1,调用参考电压函数,

\_LL\_ADC\_CALC\_VREFANALOG\_VOLTAGE,计算出来的参考电压是 3344mV,

aADCxConvertedData[1]放的是内部温度传感器电压采样数值 0x0397, 调用温度计算函数,\_\_HAL\_ADC\_CALC\_TEMPERATURE,计算出来的内部温度是 26 度。



## 2.4 定时器 PWM 波输出(1KHZ)

4.定时器PWM波输出(1KHZ)

实验原理:通过配置定时器 1,通道 1(PA8 引脚)输出 1kHZ,50%占空比的 PWM 波。 实验步骤:

(1) 用 Keil5 打开定时器 PWM 波输出(1KHZ)实验工程,并编译。

(2) 用 USB 线给开发板上电,通过 STLink 给板子下载程序(使用 Jlink, Ulink 下载得修改工程中的下载器配置)。

(3) 重新上电,用波形计数器测量 PA8 脚波形,测试数据如图:





## 2.5 定时器 PWM 波输入

#### 5.定时器PWM波输入

实验原理:通过配置定时器 1,通道 1(PA8 引脚)输出 1kHZ,50%占空比的 PWM 波,通过配置定时器 3,通道 2(PA7 引脚)进行 PWM 输入,波形发生器提供 10kHZ,50%波形,用杜邦线把 PA8 与 PA7 连接,就可以实现 PWM 波信号采集实验。

实验步骤:

(1) 用 Keil5 打开定时器 PWM 波输入实验工程,并编译。

(2) 用 USB 线给开发板上电,通过 STLink 给板子下载程序(使用 Jlink, Ulink 下载得修改工程中的下载器配置)。

(3) 杜邦线把 PA8 与 PA7 连接,在 Keil5 环境下全速运行,查看程序测量到的波形,图 1 是定时器 3 通道 2 采集到的频率以及占空比变量值。



## 2.6 定时器 1ms 中断

实验原理:通过配置定时器 3 每 1mS 进入中断一次,每进入中断服务程序一次,增加一次计数,计数 到达 500,控制 PB4 引脚输出高或低电平,从而实现 1S 钟周期闪烁。 实验步骤:

(1) 用 Keil5 打开定时器 1ms 中断工程,并编译。

(2) 用 USB 线给开发板上电,通过 STLink 给板子下载程序(使用 Jlink, Ulink 下载得修改工程中的下载器配置)。

(3) 重新上电, LED 灯会每1秒周期交替闪烁。

## 2.7 CRC 校验实验

#### \_\_\_\_7.CRC校验实验

实验原理:通过调用 CRC 校验计算公式对数组进行校验,如果校验通过 LED 灯会亮,不通过 LED 灯 会闪烁。

实验步骤:

(1) 用 Keil5 打开 CRC 校验实验实验工程,并编译。

(2) 用 USB 线给开发板上电,通过 STLink 给板子下载程序(使用 Jlink, Ulink 下载得修改工程中的下载器配置)。

(3) 重新上电,观察 LED 能亮,说明 CRC 校验通过。



#### 8.DMA传输实验

实验原理:通过 DMA1\_Channel1 配置为传输 32 字数据的内容存储在 FLASH 的缓冲区到 RAM 中的 接收缓冲区,如果传输成功 LED 灯一直闪烁。

实验步骤:

(1) 用 Keil5 打开 DMA 传输实验实验工程,并编译。

(2) 用 USB 线给开发板上电,通过 STLink 给板子下载程序(使用 Jlink, Ulink 下载得修改工程中的下载器配置)。

(3) 重新上电,观察 LED 灯一直闪烁,说明 DMA 传输完成。

### 2.9 FLASH 读写实验

📙 9.FLASH读写实验

实验原理:从 0x08008000 地址一次写入 0x78,0x56,0x34,0x12,连续写满 1 页,总共 2048 字节。 实验步骤:

(1) 用 Keil5 打开 FLASH 读写实验实验工程,并编译。

(2) 用 USB 线给开发板上电,通过 STLink 给板子下载程序(使用 Jlink, Ulink 下载得修改工程中的下载器配置)。

(3) 在 Keil5 环境下全速运行, 查看 0x08008000 地址的数据, 已经正确写入, 如下图。

| E Toject: G030                 |                  | 108001 | 2E8 E   | 7FE    | В      |       | 0:     | <0800         | 012E  | 8     |       |       |        |      |       |       |        |        |      |         |        |       |         |      |      |       |      |     |       |        |
|--------------------------------|------------------|--------|---------|--------|--------|-------|--------|---------------|-------|-------|-------|-------|--------|------|-------|-------|--------|--------|------|---------|--------|-------|---------|------|------|-------|------|-----|-------|--------|
| 🖨 🕪 G030                       | 02               | :08001 | 2EA 0   | 000    | D      | CW    | 01     | ¢0000         | )     |       |       |       |        |      |       |       |        |        |      |         |        |       |         |      |      |       |      |     |       |        |
| Analization (MDK AD)           | 03               | :08001 | 2EC 8   | 000    | D      | CW    | 0:     | <b>(800</b> ) | )     |       |       |       |        |      |       |       |        |        |      |         |        |       |         |      |      |       |      |     |       |        |
| Application/MDK-AKI            | 0>               | <08001 | 2EE 0   | 008    | п      | CW    | 0:     | e0800         | 1     |       |       |       |        |      |       |       |        |        |      |         |        |       |         |      |      |       |      |     |       |        |
| startup_stm32g03(              | <                |        |         |        |        |       |        |               |       |       |       |       |        |      |       |       |        |        |      |         |        |       |         |      |      |       |      |     |       |        |
| 🚍 🦢 Application/User           |                  | 🔄 stm3 | 32g030x | x.h    | ) mai  | n.c [ | ) stmi | 32g0xx        | _it.c |       | stm32 | 2g0xx | _hal.c |      | ) stm | 32g0) | x_hal_ | gpio.c |      | ) start | up_stn | n32g0 | )30xx.s | ;    | 🗋 g  | pio.c |      | stm | 32g0x | x_hal_ |
| 🕀 🛄 main.c                     |                  | 207    |         |        |        |       |        |               |       |       |       |       |        |      |       |       |        |        |      |         |        |       |         |      |      | _     |      | _   |       |        |
| 😥 📄 gpio.c                     |                  | 208    | 1.      | Infi   | nite   | loop  | */     |               |       |       |       |       |        |      |       |       |        |        |      |         |        |       |         |      |      |       |      |     |       |        |
|                                |                  | 209    | 1.      | USER   | CODE   | BEG   | IN WH  | ILE           | */    |       |       |       |        |      |       |       |        |        |      |         |        |       |         |      |      |       |      |     |       |        |
| stm32g0xx it.c                 | $\triangleright$ | 210    | wh      | nile ( | (1)    |       |        |               |       |       |       |       |        |      |       |       |        |        |      |         |        |       |         |      |      |       |      |     |       |        |
| stm32g0vy hal ms               |                  | 211 [  |         |        |        |       |        |               |       |       |       |       |        |      |       |       |        |        |      |         |        |       |         |      |      |       |      |     |       |        |
|                                |                  | 212    |         | /* US  | SER CO | DE EI | ND WH  | ILE           | */    |       |       |       |        |      |       |       |        |        |      |         |        |       |         |      |      |       |      |     |       |        |
| Drivers/STM32G0xx_H            |                  | 213    |         |        |        |       |        |               |       |       |       |       |        |      |       |       |        |        |      |         |        |       |         |      |      |       |      |     |       |        |
| stm32g0xx_hal_gp               |                  | 214    |         | /* US  | SER CO | DE BI | GIN    | 3 */          |       |       |       |       |        |      |       |       |        |        |      |         |        |       |         |      |      |       |      |     |       |        |
| 🗉 📄 stm32g0xx hal tin          |                  | 215    |         |        |        |       |        |               |       |       |       |       |        |      |       |       |        |        |      |         |        |       |         |      |      |       |      |     |       |        |
|                                |                  | 216    | - }     |        |        |       |        |               |       |       |       |       |        |      |       |       |        |        |      |         |        |       |         |      |      |       |      |     |       |        |
|                                |                  | 217    | 1 /*    | USER   | CODE   | END   | 3 */   |               |       |       |       |       |        |      |       |       |        |        |      |         |        |       |         |      |      |       |      |     |       |        |
| 📧 Project 🚟 Registers          | <                |        |         |        |        |       |        |               |       |       |       |       |        |      |       |       |        |        |      |         |        |       |         |      |      |       |      |     |       |        |
| Memory 1                       |                  |        |         |        |        |       |        |               |       |       |       |       |        |      |       |       |        |        |      |         |        |       |         |      |      |       |      |     |       |        |
| Address: FLASH_USER_START_ADDR | -                |        |         |        |        |       |        |               |       |       |       |       |        | _    |       |       |        |        |      |         |        |       |         | _    |      | -     | _    | -   | _     | _      |
| x08008000: 78 56 34 12 78 5    | 56 34            | 12 7   | 8 56    | 34 12  | 78 5   | 6 34  | 12 78  | 56            | 34 1  | 2 78  | 3 56  | 34    | 12 1   | 78 5 | 6 34  | 12    | 78 5   | 56 34  | 1 12 | 78 5    | 5 34   | 12    | 78 :    | 56 : | 34 1 | 2 78  | 56   | 34  | 12 7  | 78 5   |
| )x08008033: 12 78 56 34 12 7   | 78 5e            | 34 13  | 2 78    | 56 34  | 12 7   | 8 56  | 34 12  | 78            | 56 3  | 4 12  | 2 78  | 56    | 34 1   | 12 7 | 78 56 | 34    | 12 7   | 78 56  | 5 34 | 12 7    | 3 56   | 34    | 12 '    | 78 : | 56 3 | 4 12  | 78   | 56  | 34 1  | 2 7    |
| )x08008066: 34 12 78 56 34 1   | 12 78            | 56 34  | 4 12    | 78 56  | 34 1   | 2 78  | 56 34  | 12            | 78 5  | 6 34  | 1 12  | 78    | 56 3   | 34 1 | 12 78 | 56    | 34 1   | 12 78  | 3 56 | 34 1    | 2 78   | 56    | 34      | 12 ' | 78 5 | 6 34  | 12   | 78  | 56 3  | 34 1   |
| )x08008099: 56 34 12 78 56 3   | 34 12            | 78 5   | 6 34    | 12 78  | 56 3   | 4 12  | 78 56  | 34            | 12 7  | 18 56 | 5 34  | 12    | 78 :   | 56 3 | 34 12 | 78    | 56 3   | 34 12  | 2 78 | 56 3    | 1 12   | 78    | 56 :    | 34 : | 12 7 | 8 56  | 34   | 12  | 78 5  | 6 3    |
| )x080080CC: 78 56 34 12 78 5   | 56 34            | 12 7/  | 8 56    | 34 12  | 78 5   | 6 34  | 12 78  | 56            | 34 1  | 2 78  | 3 56  | 34    | 12 1   | 78 5 | 6 34  | 12    | 78 5   | 56 34  | 1 12 | 78 5    | 5 34   | 12    | 78      | 56   | 34 1 | 2 78  | 56   | 34  | 12 7  | 78 5   |
| )x080080FF: 12 78 56 34 12 7   | 78 56            | 34 1   | 2 78    | 56 34  | 12 7   | 8 56  | 34 12  | 78            | 56 3  | 34 12 | 2 78  | 56    | 34 1   | 12 7 | 18 56 | 34    | 12 1   | 78 56  | 5 34 | 12 7    | 3 56   | 34    | 12      | 78   | 56 3 | 4 12  | 2 78 | 56  | 34 1  | 2 7    |
| )x08008132: 34 12 78 56 34 1   | 12 78            | 56 34  | 4 12    | 78 56  | 34 1   | 2 78  | 56 34  | 12            | 78 5  | 6 34  | 1 12  | 78    | 56 3   | 34 1 | 12 78 | 56    | 34 1   | 12 78  | 3 56 | 34 1    | 2 78   | 56    | 34      | 12   | 78 5 | 6 34  | 12   | 78  | 56 3  | 34 1   |

## 2.10 FreeRTOS 实验

#### 📙 10.FreeRTOS实验

实验原理: FreeRTOS 线程创建,实现多线程运行,线程 1 是熄灭 LED 灯,线程 2 是点亮 LED 灯,系 统调度正常会出现 LED 闪烁的现象。 实验步骤:



(1) 用 Keil5 打开 FreeRTOS 实验实验工程,并编译。

(2) 用 USB 线给开发板上电,通过 STLink 给板子下载程序(使用 Jlink, Ulink 下载得修改工程中的下载器配置)。

(3) 在 Keil5 环境下全速运行,能看到 LED 灯闪,LED\_Thread1 线程是把 LED 熄灭,LED\_Thread2 线程是把 LED 点亮,说明两个线程正常调度运行。

#### 2.11 IWDG 看门狗实验

\_\_\_\_ 11.IWDG看门狗实验

实验原理:启动内部看门狗,如果喂狗时间超时(比如 900mS),程序会复位。程序里做了上电 10S 内喂狗,10S 后停止喂狗,芯片就会复位。

实验步骤:

(1) 用 Keil5 打开 IWDG 看门狗实验实验工程,并编译。

(2) 用 USB 线给开发板上电,程序通过 STLink 给板子下载程序(使用 Jlink, Ulink 下载得修改工程中的下载器配置)。

(2) 重新上电,观察 LED 灯会先亮 5 秒,然后闪烁 10 秒,后又亮 5 秒,闪烁 10 秒,第二次亮 5 秒, 说明看门狗复位成功。

#### 2.12 低功耗实验

🔄 12.低功耗实验

实验原理:板子正常模式运行 7 秒钟后进入待机模式,按唤醒按键(wk\_up1)能把板子从待机模式切换到 正常模式,查看电流变化情况就知道低功耗模式耗电情况。

实验步骤:

- (1) 用 Keil5 打开低功耗实验实验工程,并编译。
- (2) 程序通过 STLink 给板子下载程序(使用 Jlink, Ulink 下载得修改工程中的下载器配置)。
- (3)用 3.3V 电源接杜邦线,再串万用表给板子供 3.3V 电源,查看万用表电流变动情况,图 1 是正常运行板子整体功耗(9.33mA),图 2 是低功耗运行板子整体功耗(4.71mA),说明单片机从正常运行到StandBy模式降了 4.62mA,跟芯片手册符合(低功耗模式还有耗电是因为还有 LED 灯,上拉电阻在耗电),再按唤醒按键(wk\_up1),功耗又变成 9.33mA 以上,说明芯片又唤醒了。



#### https://shop59934694.taobao.com



图1



图 2

## 2.13 RTC 时钟实验



实验原理:使用 RTC 做了个日历,从 2000 年 1 月 1 日 0 点开始走秒。

实验步骤:

- (1) 用 Keil5 打开 RTC 时钟实验实验工程,并编译。
- (2) 用 USB 线给开发板上电,程序通过 STLink 给板子下载程序(使用 Jlink, Ulink 下载得修改工程中的下载器配置)。
- (3) 程序在 Keil5 环境下全速运行,时间存储在 aShowTime 这个变量中,通过查看 aShowTime 这个 变量的变化是按秒在变化,如下图。

```
0x20000004

0004: 0: 0:18..... 1- 1-2000......G...$...(.@....

009D: .....
```

### 2.14 USART 收发实验(中断)

\_\_\_\_ 14.USART收发实验(中断)

实验原理: 电脑上的串口调试器软件通过 USB 转 TTL 模块发数据给板子, 板子把收到的数据发送给模块, 数据在串口调试器软件上显示。

实验步骤:

(1) 用 Keil5 打开 USART 收发实验(中断)实验工程,并编译。

- (2) 用 USB 线给开发板上电,程序通过 STLink 给板子下载程序(使用 Jlink,Ulink 下载得修改工程中的下载器配置)。
- (3) 按图 1 连接,板子的 PA9,PA10,GND 分别跟 USB 转 TTL 模块的 RXD,TXD,GND 相连,板子上电, 用串口调试器发送 Helloworld,板子能返回 Helloworld,说明板子串口收发 OK。

| - 串口设置        | 发送字符:      | 匚 自动发送 | 发送周期 100 |      |
|---------------|------------|--------|----------|------|
| 选择串口: COM55 ▼ | HelloWorld |        | ,        |      |
| 波特率: 9600 💌   |            |        |          |      |
| 数据位: 8 ▼      |            |        |          |      |
| 校验位: None ▼   |            |        |          |      |
| 停止位: 1 ▼      |            |        |          |      |
| ,             |            |        |          |      |
| 关闭串口          | □ 十六进制     |        | 清空显示     | 手工发送 |
| 通讯状态          | 接收字符:      |        |          |      |
| 串口状态: 打开      | Telloworld |        |          |      |
| 发送字节: 30      |            |        |          |      |
| 接收字节: 30      |            |        |          |      |
|               |            |        |          |      |
| 清除计数          |            |        |          |      |
| 关于 退出         | □ 十六进制     | 🗆 自动分行 | 清空显示     | 保存数据 |



2.13 CLF NOIWI 法司关于

📙 15.EEPROM读写实验

实验原理:通过模拟 I2C 接口(PB10:CLK,PB11:DTA)与 M24C08 EEPROM 进行读写实验。 实验步骤:

- (1) 用 Keil5 打开 EEPROM 读写实验实验工程,并编译。
- (2) 用 USB 线给开发板上电,程序通过 STLink 给板子下载程序(使用 Jlink,Ulink 下载得修改工程中的下载器配置)。
- (3) 在 Keil5 环境下全速运行,能看到 EEPROM 的 0 地址 EEDATA 这个变量值就是初始化时候写进 EEPROM 0 地址的值,说明 EEPROM 读写正常。

## 2.16 SPI DMA 通讯

📙 16.SPI DMA通讯

#### SPI MASTER, SPI SLAVE

实验原理:两块板子通过 SPI 连接,一块做主,一块做从,通过 DMA 实现数据通讯。 实验步骤:

(1) 用 Keil5 打开 SPI MASTER (主板)实验工程,并编译。

(2) 用 Keil5 打开 SPI MASTER (从板)实验工程,并编译。

(3) 用 USB 线给开发板上电,两个程序通过 STLink 分别给两块板子下载程序(使用 Jlink, Ulink 下载得修改工程中的下载器配置)。

 (4) 两块板子的 PA5(SCK), PA6(MISO), PA7(MOSI), GND 引脚通过杜邦线对连,同时重新上电,主板 程序在 Keil5 环境下全速运行,查看程序 aTxBuffer 与 aRxBuffer 是否相同,通过图 1,图 2 比较, 是相同的。

| Address: aTxBuf | fer |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|-----------------|-----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 0x20000004:     | 2A  | 2A | 2A | 2A | 53 | 50 | 49 | 20 | 2D | 20 | 54 | 77 | 6F | 20 | 42 |
| 0x20000037:     | 2A  | 20 | 53 | 50 | 49 | 20 | 4D | 65 | 73 | 73 | 61 | 67 | 65 | 20 | 2A |
| 0x2000006A:     | 73  | 61 | 67 | 65 | 20 | 2A | 2A | 2A | 2A | 00 | 00 | 08 | 00 | 50 | 00 |
| 图 1             |     |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

| Address: aRxBu | ffer |    |    |    |    |          |    |    |    |    |    |    |    |    |    |
|----------------|------|----|----|----|----|----------|----|----|----|----|----|----|----|----|----|
| 0x200000F4:    | 2A   | 2A | 2A | 2A | 53 | 50       | 49 | 20 | 2D | 20 | 54 | 77 | 6F | 20 | 42 |
| 0x20000127:    | 2A   | 20 | 53 | 50 | 49 | 20       | 4D | 65 | 73 | 73 | 61 | 67 | 65 | 20 | 2A |
| 0x2000015A:    | 73   | 61 | 67 | 65 | 20 | 2A       | 2A | 2A | 2A | 00 | 30 | 00 | 02 | 40 | 11 |
|                |      |    |    |    |    | <u> </u> |    |    |    |    |    |    |    |    |    |



\_\_\_\_ 17.OLED显示

实验原理:插上 0.96 寸 OLED,实现 OLED 显示实验。

实验步骤:

(1) 用 Keil5 打开 OLED 实验实验工程,并编译。

(2) 用 USB 线给开发板上电,通过 STLink 给板子下载程序(使用 Jlink, Ulink 下载得修改工程中的下载器配置)。

(3) 插上 OLED 显示屏, 给板子重新上电, 能看到 OLED 显示。



## 2.18 RT-THREAD 实验

实验原理:RT-Thread 线程创建,实现多线程运行,线程 1:点亮 LED,线程 2:熄灭 LED 灯,从而能看到 LED 灯闪烁。

实验步骤:

(1) 用 Keil5 打开 RT-THREAD 实验实验工程,并编译。

(2) 用 USB 线给开发板上电,通过 STLink 给板子下载程序(使用 Jlink, Ulink 下载得修改工程中的下载器配置)。

(3) 在 Keil5 环境下全速运行, 能看到 LED 灯闪烁,说明两个线程正常调度运行。



\_\_\_\_19.IAP实验

#### APP,BOOT

实验原理:里面含两个工程: BOOT,APP。BOOT 工程主要实现 FLASH 擦写以及跳转(BOOT 工程在 FLASH 空间: 0x8000000-0x8004000), APP 实现跳转后程序的正常运行(APP 工程在 FLASH 空间: 0x8004000-0x8010000)。

实验步骤:

(1) 用 Keil5 打开 BOOT, APP 两个实验工程,并编译。

(2) 用 USB 线给开发板上电,通过 STLink 给板子下载程序(使用 Jlink, Ulink 下载得修改工程中的下载器配置)。

(3) 用 USB 线给开发板重新上电, LED 灯先是快速闪烁 1S, 说明是在 BOOT 程序中运行, 后以 2S 周期一直闪烁, 说明一直在 APP 程序中运行, 最终确定跳转可以, 两工程具备 IAP 升级条件。

#### 2.20 UCOS-II 实验

🔤 20.UCOSII实验

实验原理: UCOSII 线程创建, 实现多线程运行,线程 1:熄灭 LED 灯, 线程 2:点亮 LED 灯。 实验步骤:

(1) 用 Keil5 打开 UCOS-II 实验工程,并编译。

(2) 用 USB 线给开发板上电,通过 STLink 给板子下载程序(使用 Jlink, Ulink 下载得修改工程中的下载器配置)。

(3) 在 Keil5 环境下全速运行,能看到 LED 闪烁,说明两个线程正常调度运行。

#### 2.21 485 通讯实验

\_\_\_\_\_21.485通讯实验

实验原理: 电脑接 USB 转 485 跟板子接 TTL 转 485 模块进行通讯,通过电脑上的串口调试软件收发 数据测试,如图 1。

实验步骤:

(1) 用 Keil5 打开 485 通讯实验工程,并编译。

(2)用 USB 线给开发板上电,通过 STLink 给板子下载程序(使用 Jlink, Ulink 下载得修改工程中的下 载器配置)。

(3) USB 转 485 插电脑 USB 口,板子插 TTL 转 485 模块,用两根杜邦线把 485 通讯线 A 跟 A,B 跟 B 相连,如图 2,在 Keil5 环境下全速运行,用电脑串口调试器软件发送 Helloworld,板子能返回 Helloworld,说明 485 通讯收发 OK。





| 🍠 串口调试器 2002 |               | _          |                   |
|--------------|---------------|------------|-------------------|
| 串口设置         | 发送字符: 🗌 自动边   | 发送 发送周期 10 | <br>00 <b>毫</b> 秒 |
| 选择串口: COM4 💌 | helloworld    |            |                   |
| 波特率: 9600 💌  |               |            |                   |
| 数据位: 8 ▼     |               |            |                   |
| 校验位: None ▼  |               |            |                   |
| 停止位: 1 🗨     |               |            |                   |
|              |               |            |                   |
| 关闭串口         | □ 十六进制        | 清空显示       | 手工发送              |
|              | 接收字符 <b>:</b> |            |                   |
| 串口状态: 打开     | helloworld    |            |                   |
| 发送字节: 10     |               |            |                   |
| 接收字节: 10     |               |            |                   |
|              |               |            |                   |
| 清除计数         |               |            |                   |
| 关于 退出        | □ 十六进制 □ 自动分  | 行有空显示      | 保存数据              |
|              | 图 2           |            |                   |

## 2.22 NRF2401 实验

\_\_\_\_ 22.NRF2401实验



实验原理:准备两块板子,每块各插一个 NRF2401 模块,实现数据通讯,如图 1。 实验步骤:

(1) 用 Keil5 打开 NRF2401-TX 工程,并编译,通过 STLink 下载到一块板子,再用 Keil5 打开 NRF2401-RX 工程,并编译,通过 STLink 下载到另一块板子。

(2) 两块板子各插一块 NRF2401 以及液晶模块, 每块板子同时上电。

(3) 能看到发送的板子发送 01234, 接收的板子显示 01234, 说明实验成功。



图1

#### 2.23 DS18B20 温度实验

🔄 23.DS18B20实验

实验原理: 板子读取 DS18B20 温度传感器器模块,并在液晶显示,如图 1。 实验步骤:

(1) 用 Keil5 打开 DS18B20 实验,并编译,通过 STLink 下载程序到板子

(2) 用 3 根杜邦线把开发板 3.3V 与模块 VCC 相连,开发板 PAO 脚与模块 DQ 脚相连,开发板 GND 与模块 GND 相连。

(3) 板子重新上电, 能看到液晶屏显示温度值, 单位度。





## 2.24 DHT11 实验

#### \_\_\_\_\_24.DHT11实验

实验原理: 板子读取 DHT11 温湿度传感器器模块,并在液晶显示,如图 1。 实验步骤:

(1) 用 Keil5 打开 DHT11 实验,并编译,通过 STLink 下载程序到板子

(2) 用 3 根杜邦线把开发板 3.3V 与模块 VCC 相连,开发板 PAO 脚与模块 DATA 脚相连,开发板 GND 与模块 GND 相连。

(3) 板子重新上电, 能看到液晶屏显示温度值, 单位度,湿度值, 单位%。





## 2.25 SR04 超声波测距实验

#### \_\_\_\_\_25.SR04超声波测距

实验原理: 板子读取 HC-SR04 模块距离值,并在液晶显示,如图 1。 实验步骤:

- (1) 用 Keil5 打开 SR04 超声波测距,并编译,通过 STLink 下载程序到板子
- (2) 用 4 根杜邦线把开发板 3.3V 与模块 VCC,开发板 PA0 脚与模块 Trig,开发板 PA1 脚 与模块 Echo,开发板 GND 与模块 GND 相连。
- (3) 板子重新上电, 能看到液晶屏显示距离值, 单位 cm。



https://shop59934694.taobao.com



图1

## 2.26 5V 步进电机实验

#### \_\_\_\_\_ 26.5V步进电机实验

实验原理:通过4个I/O发脉冲,控制步进电机转动,如图1 实验步骤:

- (1) 用 Keil5 打开 5V 步进电机实验,并编译,通过 STLink 下载程序到板子
- (2) 用 6 根杜邦线把开发板 5V 与模块+,开发板 GND 与模块-,开发板 PB0 脚与模块 IN1,开发板 PB1 脚与模块 IN2,PB2 脚与模块 IN3,PB3 脚与模块 IN4 相连
- (3) 5V USB 供电, 按复位, 可以看到步进电机先逆时钟转一圈不到, 然后再顺时钟转回。







## 2.27 红外避障实验

🔄 27.红外避障

实验原理:通过1个I/O高低电平,来判断红外避障模块是否接触到障碍物 实验步骤:

(1) 用 Keil5 打开**红外避障**,并编译,通过 STLink 下载程序到板子

(2) 用 3 根杜邦线把开发板 3.3V 与模块 VCC,开发板 GND 与模块 GND,开发板 PAO 脚与模块 OUT 相连

- (3) 5V USB 供电,按复位,可以看到液晶屏幕显示障碍物是否有无,如果模块靠近桌子,会显示
- 有,模块远离桌子,会显示无。



https://shop59934694.taobao.com



图 1



图 2

## 2.28 红外遥控接收实验

28.红外遥控接收

实验原理:通过1个定时器捕获输入口,来解码 NEC 红外编码。

实验步骤:

(1) 用 Keil5 打开**红外遥控接收实验**,并编译,通过 STLink 下载程序到板子



(2) 用 3 根杜邦线把开发板 3.3V 与接收头模块+脚,开发板 GND 与接收头模块-脚,开发板 PA8 脚 与模块 S 脚相连

(3) 5V USB 供电,按复位,用遥控器对准接收头,可以看到遥控器按啥数字,液晶就显示啥数字,如图所示。



图1

## 2.29 华邦 W25Q32 FLASH 读写

📙 29.华邦W25Q32 FLASH读写

实验原理:通过 SPI1 口对 W25Q32 FLASH 进行读写操作。 实验步骤:

- (1) 用 Keil5 打开**华邦 W25Q32 FLASH 读写实验**,并编译,通过 STLink 下载程序到板子
- (2) 用 6 根杜邦线把开发板 3.3V 与模块 VCC,开发板 GND 与模块 GND,开发板 PA4 与模块 CS, 开发板 PA6 与模块 DO,开发板 PA7 与模块 DI,开发板 PA5 与模块 CLK 相连,如图所示
- (3) STLINK 插板子,在 Keil5 环境下全速运行,查看程序 ReadBuff 数组 8 字节内容从 FLASH 中读出来的内容是 0x55,说明写进去读出来没问题。





## 2.30 4 位数码管显示

30.4位数码管显示

实验原理:通过 I/O 口控制 74HC595 驱动数码管,实现数码管显示。

实验步骤:

- (1) 用 Keil5 打开 4 位数码管显示实验,并编译,通过 STLink 下载程序到板子
- (2) 用 5 根杜邦线把开发板 3.3V 与模块 VCC

开发板 PA4 脚与模块 SCLK,开发板 PA5 脚与模块 RCLK,开发板 PA6 脚与模块 DIO,开发板 GND 与模块 GND

(3) 板子重新上电或复位,可以看到数码管显示 43.21,如图所示



https://shop59934694.taobao.com



图1

## 2.31 VL53L0X 激光测距实验

\_\_\_\_\_31.VL53L0X激光测距实验

实验原理:通过 I2C 接口驱动 VL53L0X,实现距离测试,在液晶屏显示。 实验步骤:

(1) 用 Keil5 打开 VL53LOX 激光测距实验,并编译,通过 STLink 下载程序到板子

(2) 用 5 根杜邦线把开发板 3.3V 与模块 VIN 开发板 PA11 脚与模块 SCL,开发板 PA12 脚与模块 SDA,开发板 PB7 脚与模块 XSHUT,开发板 GND 与模块 GND

(3) 插上液晶屏, 板子重新上电或复位, 可以看到模块测试物体距离, 单位 mm,如图所示





例程还在不断更新中……